

Chunting Zhou¹, Xuezhe Ma², Paul Michel¹, Graham Neubig¹

¹Language Technologies Institute, Carnegie Mellon University

²Information Sciences Institute, University of Southern California

BACKGROUND

Abstract

- 1. Group Distributionally Robust Optimization can fail when groups do not directly account for various spurious correlations that occur in the data (imperfect partition).
- 2. We propose an effective method group-conditional DRO that minimizes the worst-case losses over a more flexible set of distributions that are defined on the *joint distribution* of groups and instances, instead of treating each group as a whole at optimization time.

Code available at:

https://github.com/violet-zct/group-conditional-DRO

Problem: Poor worst-group performance

Models trained with empirical risk minimization (ERM) can latch on to spurious correlations in the training data and perform poorly on some groups.

Toxicity Detection (Fortuna & Nunes., 18)

Twitter: "trump and his supporters can all burn in the pits of fucking hell."

Attribute (dialect): White-aligned / Hispanic / African American (AAE) / other

Label: abusive / normal / hateful / span avg acc: 79.7 normal, AAE: 34.3

MultiNLI (Williams et al., 18)

(P) Turned out, I wasn't completely wrong.

(H) I was 100 percent wrong.

Attribute: if negation word in Hypothesis Label: entailment / negation / neutral

Minority group: no negation word, negation

CelebA (Liu et al., 15)

y: blond

y: blac

PERFECT V.S. IMPERFECT PARTITIONS

Imperfect partitions are common: (1) annotation is expensive (2) privacy concerns: sensitive attributes (3) spurious attributes are unknown

Examples of imperfect partitions: natural groups from topics/domains; groups from unsupervised clustering

MOTIVATION AND APPROACH: GROUP-CONDITIONAL DISTRIBUTIONALLY ROBUST OPTIMIZATION

 $\hat{P}_{ ext{train}}(X,Y)$ versus $P_{ ext{ideal}}(X,Y)$

Group Distributionally Robust Optimization (group DRO)

$$\mathcal{L}_{GDRO}(\theta) = \sup_{q \in \mathcal{U}} \sum_{i \le N} q_i \mathcal{L}(\theta; g = i), \text{ where } \mathcal{U} \subset \Delta^{N-1}$$

Group DRO minimizes the worst expected loss over a set of potential test distributions \mathcal{Q} , which is an instance of DRO.

- Defining ${\mathcal Q}$ that contains P_{ideal} is highly advantageous for learning robust features.

Group DRO can fail under imperfect partitions:

- It's important to have a worst-case distribution q over the groups such that the spurious attribute no longer correlates with the labels.
- However, with imperfect partitions, the underlying conflicts prevent group DRO from formulating a worse-case distribution that can eliminate spurious correlations, i.e. $P_{\text{ideal}} \notin \mathcal{Q}$.

Examples: G1 - bg = desert; G2 - bg = green pastures

To prevent the model from learning spurious correlations between camel and desert, one would upweight G2; however, this exacerbates spurious correlations between green pastures and cows in G2.

Group-conditional DRO (GC-DRO)

• GC-DRO defines a more flexible uncertainty set over the *joint* distribution of (x, y, g):

$$\mathcal{Q}^{\alpha,\beta} = \left\{ q(g)q(x,y|g) : q(g) \le \frac{p_{\text{train}}(g)}{\alpha}, \ \frac{1}{N} \le q(x,y|g) \le \frac{p_{\text{train}}(x,y|g)}{\beta}, \forall x,y,g \right\}$$

• Efficient online greedy optimization: interleave the updates of model parameters θ and q.

How and WHY Does GC-DRO Work?

Imperfect Partitions: (1) manually designed adversarial portions (2) supervised classifier (3) unsupervised clustering

Robust Acc: the worst accuracy across all groups (clean partitions of the test set)

How does GC-DRO perform?

- Under the clean partition, all the baseline methods outperform ERM greatly on the robust accuracy.
- Under the imperfect partition, baseline methods (resampling, group DRO) that leverage group information fail to perform well on the worst accuracy; GC-DRO still performs remarkably well due to the flexible weighting scheme.

Datasets	Methods	Clean Partition		Imperfect Partition	
		Robust Acc	Average Acc	Robust Acc	Average Acc
Celeb-A	ERM resampling group DRO	40.14 ± 0.99 86.81 ± 1.26 88.19 ± 2.31	95.92 ± 0.05 92.72 ± 0.28 92.65 ± 0.20	40.14 ± 0.99 44.17 ± 1.15 45.97 ± 1.73	95.92 ± 0.05 95.58 ± 0.03 95.81 ± 0.09
	GC-DRO	88.75 ± 0.82	92.92 ± 0.16	$ $ 82.85 \pm 1.54	89.32 ± 2.21
MNLI	ERM resampling group DRO	70.84 ± 2.47 67.02 ± 2.43 75.14 ± 3.96	86.18 ± 0.18 85.72 ± 0.37 85.82 ± 0.24	70.84 ± 2.47 67.26 ± 1.63 70.34 ± 2.19	86.18 ± 0.18 85.22 ± 0.58 86.02 ± 0.25
	GC-DRO	$ 77.82 \pm 1.45$	85.04 ± 0.67	$ 75.32 \pm 0.93$	84.82 ± 0.74
FDCL18	ERM resampling group DRO	34.30 ± 1.83 55.44 ± 4.69 56.83 ± 2.94	79.70 ± 1.05 72.04 ± 1.99 70.52 ± 1.99	34.30 ± 1.83 26.10 ± 4.11 36.24 ± 3.80	79.70 ± 1.05 80.66 ± 0.52 79.40 ± 1.12
	GC-DRO	57.28 ± 2.71	70.26 ± 0.94	$\textbf{48.42} \pm \textbf{6.72}$	72.02 ± 2.96

Why does GC-DRO work? —— A study on MNLI

Groups in the imperfect partitions corresponds to cells in the same color in the left figure.

- Group DRO equally weighs examples in the same group of the imperfect partitions and pays less attention to minority groups.
- GC-DRO can handle sub-groups inside each group in a fine-grained way, which encourages the model to learn from minority groups that help combat spurious features.

