Chunting Zhou¹, Xuezhe Ma², Paul Michel¹, Graham Neubig¹ ¹Language Technologies Institute, Carnegie Mellon University ²Information Sciences Institute, University of Southern California # BACKGROUND ### **Abstract** - 1. Group Distributionally Robust Optimization can fail when groups do not directly account for various spurious correlations that occur in the data (imperfect partition). - 2. We propose an effective method group-conditional DRO that minimizes the worst-case losses over a more flexible set of distributions that are defined on the *joint distribution* of groups and instances, instead of treating each group as a whole at optimization time. #### Code available at: https://github.com/violet-zct/group-conditional-DRO ### Problem: Poor worst-group performance Models trained with empirical risk minimization (ERM) can latch on to spurious correlations in the training data and perform poorly on some groups. ### **Toxicity Detection** (Fortuna & Nunes., 18) Twitter: "trump and his supporters can all burn in the pits of fucking hell." Attribute (dialect): White-aligned / Hispanic / African American (AAE) / other Label: abusive / normal / hateful / span avg acc: 79.7 normal, AAE: 34.3 #### MultiNLI (Williams et al., 18) (P) Turned out, I wasn't completely wrong. (H) I was 100 percent wrong. Attribute: if negation word in Hypothesis Label: entailment / negation / neutral Minority group: no negation word, negation CelebA (Liu et al., 15) y: blond y: blac # PERFECT V.S. IMPERFECT PARTITIONS Imperfect partitions are common: (1) annotation is expensive (2) privacy concerns: sensitive attributes (3) spurious attributes are unknown **Examples of imperfect partitions:** natural groups from topics/domains; groups from unsupervised clustering ## MOTIVATION AND APPROACH: GROUP-CONDITIONAL DISTRIBUTIONALLY ROBUST OPTIMIZATION $\hat{P}_{ ext{train}}(X,Y)$ versus $P_{ ext{ideal}}(X,Y)$ #### **Group Distributionally Robust Optimization (group DRO)** $$\mathcal{L}_{GDRO}(\theta) = \sup_{q \in \mathcal{U}} \sum_{i \le N} q_i \mathcal{L}(\theta; g = i), \text{ where } \mathcal{U} \subset \Delta^{N-1}$$ Group DRO minimizes the worst expected loss over a set of potential test distributions \mathcal{Q} , which is an instance of DRO. - Defining ${\mathcal Q}$ that contains P_{ideal} is highly advantageous for learning robust features. # Group DRO can fail under imperfect partitions: - It's important to have a worst-case distribution q over the groups such that the spurious attribute no longer correlates with the labels. - However, with imperfect partitions, the underlying conflicts prevent group DRO from formulating a worse-case distribution that can eliminate spurious correlations, i.e. $P_{\text{ideal}} \notin \mathcal{Q}$. ### Examples: G1 - bg = desert; G2 - bg = green pastures To prevent the model from learning spurious correlations between camel and desert, one would upweight G2; however, this exacerbates spurious correlations between green pastures and cows in G2. #### **Group-conditional DRO (GC-DRO)** • GC-DRO defines a more flexible uncertainty set over the *joint* distribution of (x, y, g): $$\mathcal{Q}^{\alpha,\beta} = \left\{ q(g)q(x,y|g) : q(g) \le \frac{p_{\text{train}}(g)}{\alpha}, \ \frac{1}{N} \le q(x,y|g) \le \frac{p_{\text{train}}(x,y|g)}{\beta}, \forall x,y,g \right\}$$ • Efficient online greedy optimization: interleave the updates of model parameters θ and q. ### How and WHY Does GC-DRO Work? Imperfect Partitions: (1) manually designed adversarial portions (2) supervised classifier (3) unsupervised clustering Robust Acc: the worst accuracy across all groups (clean partitions of the test set) #### How does GC-DRO perform? - Under the clean partition, all the baseline methods outperform ERM greatly on the robust accuracy. - Under the imperfect partition, baseline methods (resampling, group DRO) that leverage group information fail to perform well on the worst accuracy; GC-DRO still performs remarkably well due to the flexible weighting scheme. | Datasets | Methods | Clean Partition | | Imperfect Partition | | |----------|--------------------------------|--|--|--|--| | | | Robust Acc | Average Acc | Robust Acc | Average Acc | | Celeb-A | ERM
resampling
group DRO | 40.14 ± 0.99
86.81 ± 1.26
88.19 ± 2.31 | 95.92 ± 0.05
92.72 ± 0.28
92.65 ± 0.20 | 40.14 ± 0.99
44.17 ± 1.15
45.97 ± 1.73 | 95.92 ± 0.05
95.58 ± 0.03
95.81 ± 0.09 | | | GC-DRO | 88.75 ± 0.82 | 92.92 ± 0.16 | $ $ 82.85 \pm 1.54 | 89.32 ± 2.21 | | MNLI | ERM
resampling
group DRO | 70.84 ± 2.47
67.02 ± 2.43
75.14 ± 3.96 | 86.18 ± 0.18
85.72 ± 0.37
85.82 ± 0.24 | 70.84 ± 2.47
67.26 ± 1.63
70.34 ± 2.19 | 86.18 ± 0.18
85.22 ± 0.58
86.02 ± 0.25 | | | GC-DRO | $ 77.82 \pm 1.45$ | 85.04 ± 0.67 | $ 75.32 \pm 0.93$ | 84.82 ± 0.74 | | FDCL18 | ERM
resampling
group DRO | 34.30 ± 1.83
55.44 ± 4.69
56.83 ± 2.94 | 79.70 ± 1.05
72.04 ± 1.99
70.52 ± 1.99 | 34.30 ± 1.83
26.10 ± 4.11
36.24 ± 3.80 | 79.70 ± 1.05
80.66 ± 0.52
79.40 ± 1.12 | | | GC-DRO | 57.28 ± 2.71 | 70.26 ± 0.94 | $\textbf{48.42} \pm \textbf{6.72}$ | 72.02 ± 2.96 | # Why does GC-DRO work? —— A study on MNLI Groups in the imperfect partitions corresponds to cells in the same color in the left figure. - Group DRO equally weighs examples in the same group of the imperfect partitions and pays less attention to minority groups. - GC-DRO can handle sub-groups inside each group in a fine-grained way, which encourages the model to learn from minority groups that help combat spurious features.