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Abstract

1. Conditional neural sequence generation systems can hallucinate new content

not supported by the source inputs. Step1: Synthetic Labeled Data Creation
2. We develop an unsupervised method with pre-trained language language

models to detect hallucinated tokens in the machine generation.

3. We propose a token-level truncated loss based on the outputs of our
hallucination detection system to improve noisy training where training data
contains hallucinated noise.

Code available at:
https://github.com/violet-zct/fairseq-detect-hallucination

Hallucination: fluent text output but not supported by the input.
— neural machine translation in out-of-domain or low-resource setting
— abstract summarization (Maynez et al., 2020)
— extrinsic (additional content) v.s. intrinsic (synthesized content) hallucinations

TOKEN-LEVEL HALLUCINATION PREDICTION: AN EXAMPLE IN MT
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EVALUATION ON TOKEN-LEVEL HALLUCINATION DETECTION

¢ \We evaluate on 4 abstract summarization (AS) test sets (XSum, Maynez et al., 2020) and 2 machine
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A TWO-STAGE HALLUCINATION DETECTION MODEL

1. Given the target sequence T in the bi-text training set, a
hallucinated version of it T* is created by first corrupting T with
noise functions.

2. T* is fed into the pre-trained denoising autoencoder BART to
generate a new sentence T'.

3. Finally, each token in T is assigned the pseudo hallucination
label by computing the edit-distance between T and T.

Hallucination label assignment with edit distance

fBART: pretrained denoising autoencoder

T* <MASK> goes to the bookstore <MASK>.
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Generate hallucinated target with BART

Step2: Fine-tuning a Pretrained LM on the Synthetic Data

e Given the synthetic data (T’ and its pseudo
labels), we fine-tune a pre-trained language
model XLM-Roberta (for e.g. machine translation)

Lmasked language model 1 1 0//0[0 0 1 (| 1 1

Lprediction

| A A R M

or Roberta (for e.g. summarization) to predict [
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hallucination labels for the target side.
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¢ \We also add a multi-task masked language model

objective on the true targets. BRENERE. |<SEP>

bookstore on Thursday.
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* At test time, we only concat S and machine Source S
generation as the input, and generalizes well.

Training objective: L = Lreqd + @+ Linim

True Target T Hallucinated version of target T’

LEVERAGING HALLUCINATION LABELS IN NOISY TRAINING

translation (MT) test sets that we created. We proposed three strong baselines for this new task.
e \We show the F1 of hallucination labels. Ours outperforms baselines significantly, especially on MT.

B best baseline Ours
/0

F1 X100

22

20.25

BLEU

18.5

16.75

15
baseline ST ST+noise ST+seq trunc

53.75
37.5
21 .05 .
5 [

MT-TranS2S MT-MBART AS-PtGen AS-TConvS2S AS-TranS2S  AT-BERTS2S

EVALUATION ON WORD-LEVEL QUALITY ESTIMATION (WMT18)

Case |: Improving Self Training in Machine Translation

Ours

® Token-level hallucination labels are fine-grained signals.
- We use a fine-grained loss for noisy training:
excluding predicted hallucinated tokens H(y) in the

noisy targety: (Wlz:0)= > logp(yily<i,x;0)
i<N;y; ¢ H(y)
e Reduce adverse effects of noisy training instances by
maximally using the clean part

- self-training with weak teacher model can produce

noisy pseudo targets
- training data of low-resource language pairs are

often in low-quality

Fig. BLEU scores, ours—self-training with token-level truncation loss Case Il: Improving Corpus Filtering for Low-Resource MT
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