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LEARNING TO REPRESENT AND APPLY EDITS

• Edits are ubiquitous in both source code and natural language

NEURAL EDITORS
Graph-to-Tree Neural Editors
Motivation the data to edit (e.g., source code) usually has strong underlying structure. 
How to utilize the structural information to better predict the edited input?

• Source and target data (code) is represented as structured Abstract Syntax Trees
• Source data is encoded using Grated Graph Neural Networks (Allamanis et al., 2018)

EXPERIMENTS
Quality of Edit Representations – Edit Retrieval Task
• Given a seed edit representation, retrieve its N-nearest neighboring edits
• Manually annotate the relevance (with a scale of 3) of retrieved edits

Precision of Neural Editors
• Given a learned edit encoding                         , apply the edit to a similar 

input to generate the edited input

Clustering Edits on GitHub Commits and Wikipedia Edit History

NEURAL EDITORS

• Given input , and edit representation , a neural
editor applies the edit to and generates the updated input

Sequence-to-Sequence Neural Editors
• Seq2Seq Editors encode the input data as a sequence of tokens
• A recurrent neural network decodes the target using the

encoded input and the edit representation

Research Questions

Edit Representation How to learn edits from examples?

Neural Editor How to apply an edit to a new input?
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source code edits (e.g., GitHub commits) natural language sentence edits

Contributions

Formalize the problem of data-driven learning of edits

Present neural models that learn to represent and apply edits

Release a large-scale dataset of code edits for future research

EDIT REPRESENTATIONS
Sequential Encoding of Edits
• Use diffing algorithm to compute alignments of tokens in source and target.
• Use bidirectional LSTMs to encode the alignment information
Graph Encoding of Edits
• Add extra alignment edges between source and target trees to form a graph
• Encode the graph which captures the editorial transformation from source to target 

using gated graph neural networks

Sequential Edit Encoder Graph Edit Encoder

Replace Delete

GITHUBEDITS CODE EDIT DATASET
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Evaluation Systems trained on the noisy
GITHUBEDITS dataset, and tested on 2.8K
edit pairs with known, labeled edit
categories (16 in total). Some examples:

Before x != null && x.StartsWith(“a”)
After x?.StartsWith(“a”)

Category Use conditional Access

Before i = i + 2
After i += 2

Category Use --/++ operator

Desc. Seitch from Assert.Equal to
Assert.Empty

Before Assert.Equal(0, 
V0.ProjectIds.Count)

After Assert.Empty(V0.ProjectIds)

Before Assert.Equal(0, 
V0.ProjectReferences.Count())

After Assert.Empty(
V0.ProjectReferences)

Before Assert.Equal(0, 
V0.Messages.Count)

After Assert.Empty(V0.Messages)

Desc. Optimize LINQ Queries
Before V1.Customers.Where(V2 => V2.CustomerID 

== LITERAL).FirstOrDefault()
After var V0 = V1.Customers.FirstOrDefault(V2 

=>V2.CustomerID == LITERAL)

Before this.V1.Where(V2 => 
V2.CanDeserialize(V3)).FirstOrDefault()

After this.V1.FirstOrDefault(V2 => 
V2.CanDeserialize(V3))

Before V1.TypeConverters.Where(V2 => 
V2.CanConvertTo(V3,V1)).FirstOrDefault()

After V1.TypeConverters.FirstOrDefault(V2 => 
V2.CanConvertTo(V3, V1))

Desc. Add a parenthetical expression also ... as
mid-state regional airport, +also known as mid-state 
airport,+ is a small airport on in rush township…
islamic culture, +also known as saracenic culture,+ is 
a term primarily used in secular academia…
birds of prey, +also known as raptors,+ are birds that 
hunt for food primarily via flight…

Desc. Add a Person’s Middle Name
isaiah +marcus+ rankin ( born 22 may 1978 in london ) 
is an english professional footballer
audrey +Kathleen+ brown ( born 24 may , 1913 ) is a 
british athlete who competed mainly in the 100 metres .
monique +edith+ lamoureux ( born july 3 , 1989 ) is an 
american ice hockey player .

Sampled edit clusters from GITHUBEDITS

Sampled edit clusters (+insertion+ edits) from WIKIATOMICEDITS dataset

• The clustering results indicate that the learned encoding of edits is 
sensitive to both the context and position of the edits

• 110K pairs of C# code edits collected from GitHub commit histories
• Each edit involves at most three consecutive lines of code
• Shipped with parsed Abstract Syntax Trees for each sample
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Graph2Tree editors
transduce the tree-
structured input to
the target tree via a
sequence of tree-
constructing actions
(Yin et al., 2018)
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DETECTING	HALLUCINATED	CONTENT	IN	CONDITIONAL	NEURAL	SEQUENCE	GENERATION
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EVALUATION ON TOKEN-LEVEL HALLUCINATION DETECTION

A TWO-STAGE HALLUCINATION DETECTION MODEL
1. Conditional neural sequence generation systems can hallucinate new content 
not supported by the source inputs.

2. We develop an unsupervised method with pre-trained language language 
models to detect hallucinated tokens in the machine generation.

3. We propose a token-level truncated loss based on the outputs of our 
hallucination detection system to improve noisy training where training data 
contains hallucinated noise.

Abstract

https://github.com/violet-zct/fairseq-detect-hallucination
Code available at:

    Hallucination: fluent text output but not supported by the input.

       — neural machine translation in out-of-domain or low-resource setting

       — abstract summarization (Maynez et al., 2020)

       — extrinsic (additional content) v.s. intrinsic (synthesized content) hallucinations

TOKEN-LEVEL HALLUCINATION PREDICTION: AN EXAMPLE IN MT

EVALUATION ON WORD-LEVEL QUALITY ESTIMATION (WMT18)
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LEVERAGING HALLUCINATION LABELS IN NOISY TRAINING

Case I: Improving Self Training in Machine Translation
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Case II: Improving Corpus Filtering for Low-Resource MT

Step1: Synthetic Labeled Data Creation

Step2: Fine-tuning a Pretrained LM on the Synthetic Data

L = Lpred + ↵ · Lmlm
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1. Given the target sequence T in the bi-text training set, a   
hallucinated version of it T* is created by first corrupting T with 
noise functions.


2. T* is fed into the pre-trained denoising autoencoder BART to 
generate a new sentence T’.


3. Finally, each token in T’ is assigned the pseudo hallucination 
label by computing the edit-distance between T’ and T.

T*

• Given the synthetic data (T’ and its pseudo 
labels), we fine-tune a pre-trained language 
model XLM-Roberta (for e.g. machine translation) 
or Roberta (for e.g. summarization) to predict 
hallucination labels for the target side.


• We also add a multi-task masked language model 
objective on the true targets.

• At test time, we only concat S and machine 
generation as the input, and generalizes well. Training objective:

• We evaluate on 4 abstract summarization (AS) test sets (XSum, Maynez et al., 2020) and 2 machine 
translation (MT) test sets that we created. We proposed three strong baselines for this new task.


•  We show the F1 of hallucination labels. Ours outperforms baselines significantly, especially on MT.

Fig. BLEU scores, ours—self-training with token-level truncation loss

Fig. Percentage (%) of hallucination tokens in the machine translations

• Token-level hallucination labels are fine-grained signals.

`(y|x; ✓) =
X

iN ;yi /2H(y)

log p(yi|y<i, x; ✓)
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- We use a fine-grained loss for noisy training: 
excluding predicted hallucinated tokens     in the 
noisy target    :

H(y)
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• Reduce adverse effects of noisy training instances by 
maximally using the clean part

-  self-training with weak teacher model can produce 
noisy pseudo targets

- training data of low-resource language pairs are 
often in low-quality


