

DETECTING HALLUCINATED CONTENT IN CONDITIONAL NEURAL SEQUENCE GENERATION

Chunting Zhou¹, Graham Neubig¹, Jiatao Gu², Mona Diab², Paco Guzman², Luke Zettlemoyer², Marjan Ghazvininejad²

¹Language Technologies Institute, Carnegie Mellon University ²Facebook AI Research

facebook Artificial Intelligence

Abstract

- 1. Conditional neural sequence generation systems can hallucinate new content not supported by the source inputs.
- 2. We develop an unsupervised method with pre-trained language language models to *detect hallucinated tokens* in the machine generation.
- 3. We propose a token-level truncated loss based on the outputs of our hallucination detection system to improve noisy training where training data contains hallucinated noise.

Code available at:

70

53.75

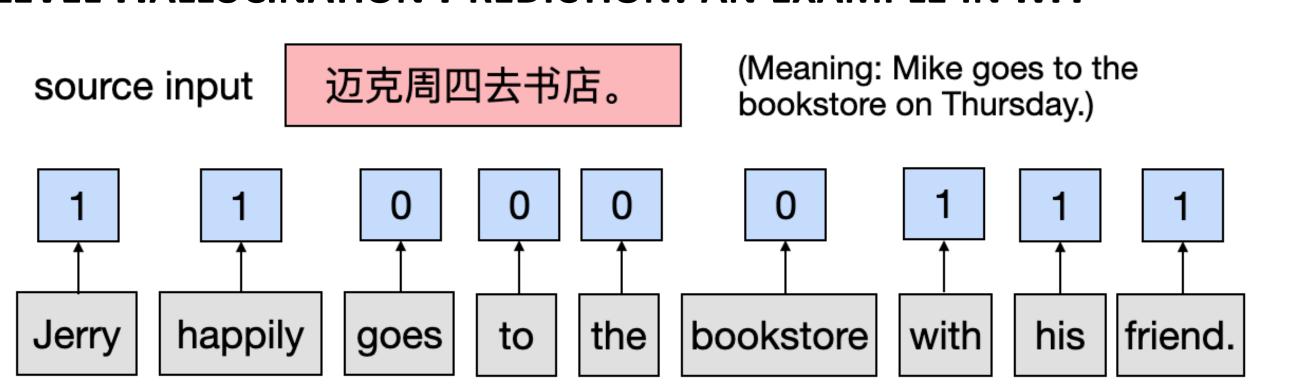
37.5

https://github.com/violet-zct/fairseq-detect-hallucination

Hallucination: fluent text output but not supported by the input.

- neural machine translation in out-of-domain or low-resource setting
- abstract summarization (Maynez et al., 2020)
- extrinsic (additional content) v.s. intrinsic (synthesized content) hallucinations

TOKEN-LEVEL HALLUCINATION PREDICTION: AN EXAMPLE IN MT

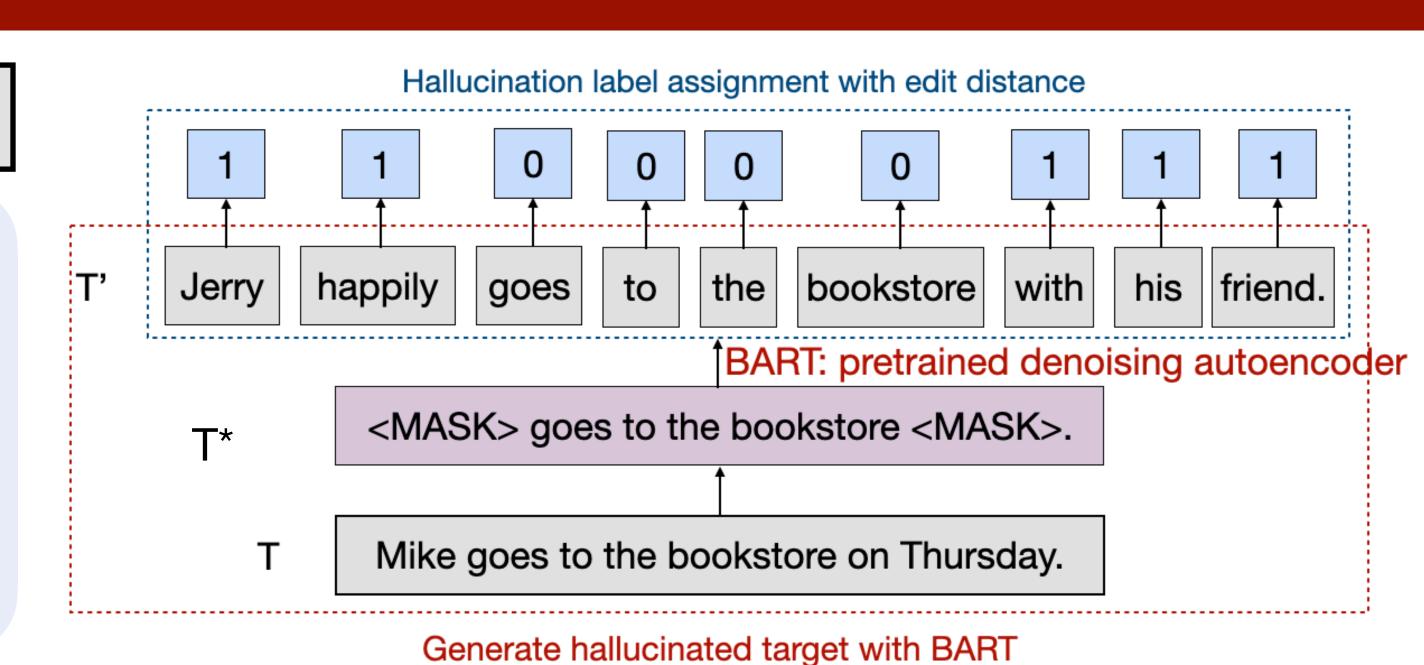


best baseline

A Two-stage Hallucination Detection Model

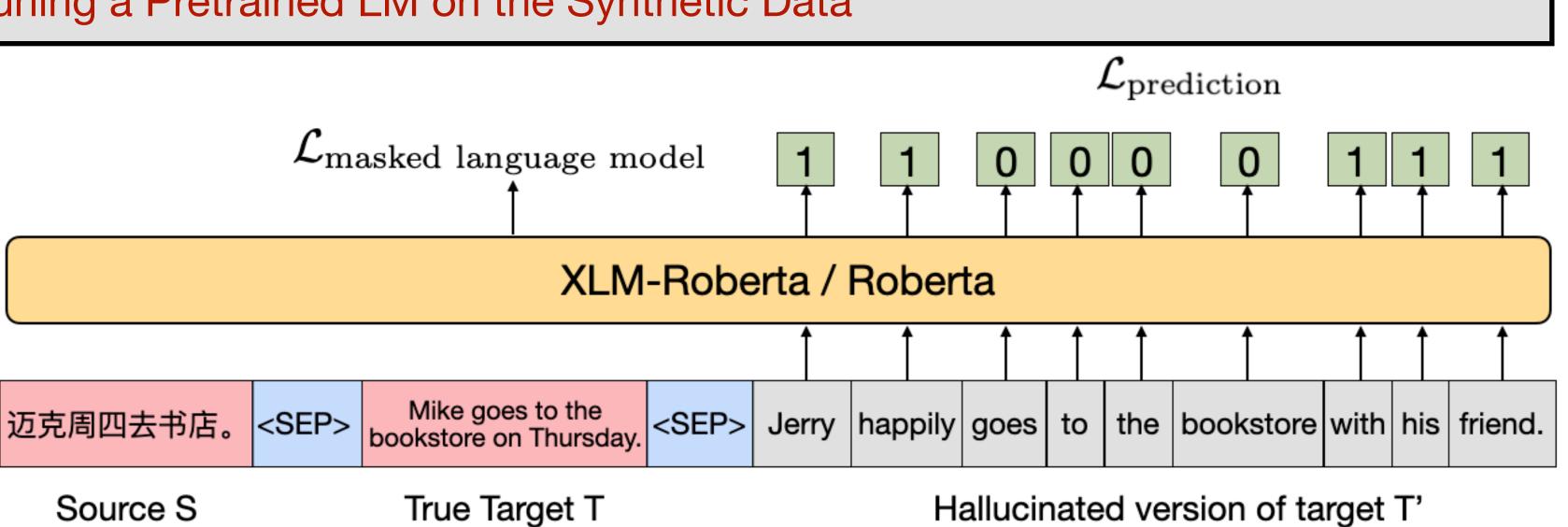
Step1: Synthetic Labeled Data Creation

- 1. Given the target sequence T in the bi-text training set, a hallucinated version of it T* is created by first corrupting T with noise functions.
- 2. T* is fed into the pre-trained denoising autoencoder BART to generate a new sentence T'.
- 3. Finally, each token in T' is assigned the pseudo hallucination label by computing the edit-distance between T' and T.



Step2: Fine-tuning a Pretrained LM on the Synthetic Data

- Given the synthetic data (T' and its pseudo labels), we fine-tune a pre-trained language model XLM-Roberta (for e.g. machine translation) or Roberta (for e.g. summarization) to predict hallucination labels for the target side.
- We also add a multi-task masked language model objective on the true targets.
- At test time, we only concat S and machine generation as the input, and generalizes well.



Training objective: $\mathcal{L} = \mathcal{L}_{pred} + \alpha \cdot \mathcal{L}_{mlm}$

16.75

LEVERAGING HALLUCINATION LABELS IN NOISY TRAINING

21.02

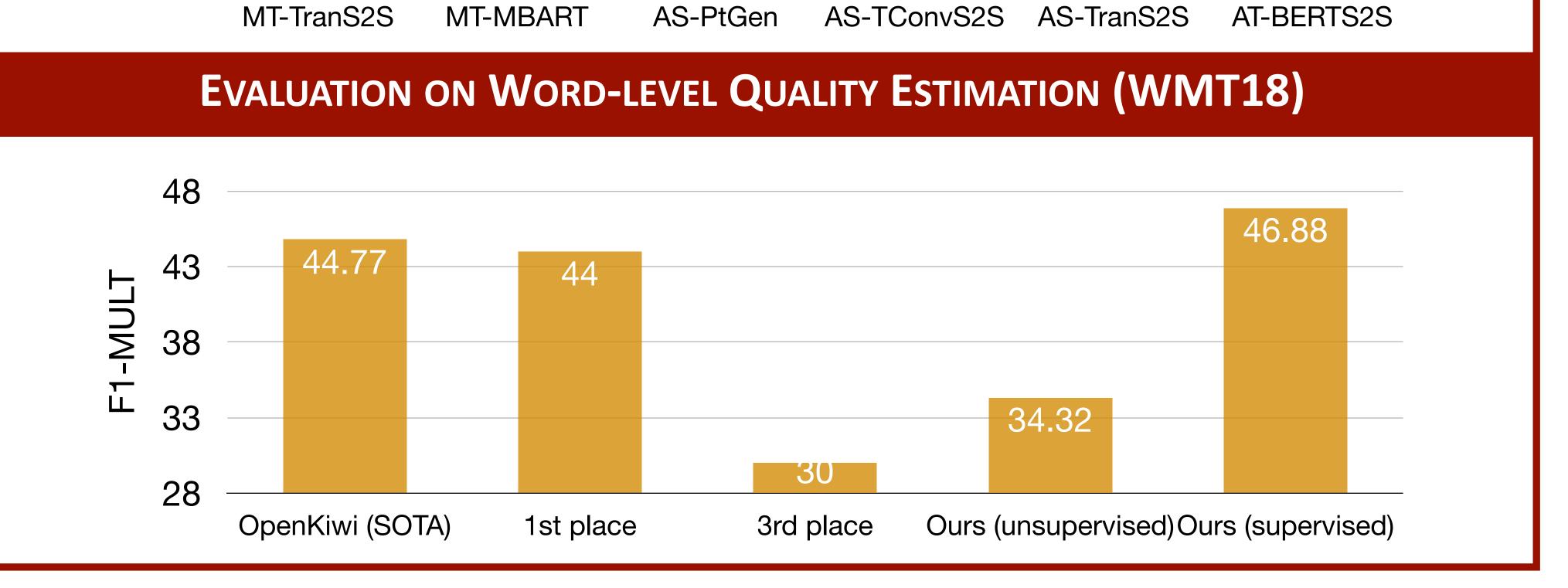
Case I: Improving Self Training in Machine Translation • We evaluate on 4 abstract summarization (AS) test sets (XSum, Maynez et al., 2020) and 2 machine 20.25 19.91 19.31

baseline

- Token-level hallucination labels are fine-grained signals.
 - We use a fine-grained loss for noisy training: excluding predicted hallucinated tokens H(y) in the noisy target $y: \ell(y|x;\theta) = \sum_{i=1}^{n} \log p(y_i|y_{i},x;\theta)$ $i \leq N; y_i \notin H(y)$
 - Reduce adverse effects of noisy training instances by maximally using the clean part
 - self-training with weak teacher model can produce noisy pseudo targets
 - training data of low-resource language pairs are often in low-quality

ST+noise ST+seq trunc Ours

Fig. BLEU scores, ours—self-training with token-level truncation loss Case II: Improving Corpus Filtering for Low-Resource MT



EVALUATION ON TOKEN-LEVEL HALLUCINATION DETECTION

translation (MT) test sets that we created. We proposed three strong baselines for this new task.

• We show the F1 of hallucination labels. Ours outperforms baselines significantly, especially on MT.

Ours

